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Let G be a complex periodic Jacobi matrix of period &. We reduce the study of
the spectrum of G to that of a block tridiagonal matrix of the form

O I O
e Oc Ik

O I, O - |

where [, and O, denote the identity and null matrices of order k, respectively.
© 2000 Academic Press

1. INTRODUCTION

In the past few years there has been a growing interest in the study of
the spectral properties of non-symmetric operators defined by band
matrices with complex coefficients. In this regard see [ 1-6]. In particular,
this is due to numerous applications in the theory of continued fractions,
Padé and Hermite—Padé approximation. Complex periodic Jacobi matrices
are particularly important. The complement of the essential spectrum of the
operator associated to any such matrix determines, except for isolated
points, the region of convergence of the Chebyshev continued fractions
whose parameters are asymptotically periodic and the limits coincide with
the elements of the periodic Jacobi matrix. In this connection, using
analytic methods, the spectrum of a complex periodic Jacobi matrix was
investigated in [ 6]. The study of real periodic Jacobi matrices was initiated
by J. L. Geronimus in [9] and subsequently developed in [8, 11]. In [4],
complex asymptotically periodic Jacobi matrices with real limits were con-
sidered. We present a new approach to the study of the spectrum of a com-
plex periodic Jacobi matrix based primarily on an algebraic relation which
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allows to reduce this study to that of a very simple block tridiagonal matrix
(see Theorem 1 and (12) below).

Let
pO LM
ad p L@
Lo 4@ p> ] (1)

where {a™},.,, {b"™},., are k-periodic sequences of complex numbers.
That is

a™ = q), bW =p0, =1,k (2)

for all n=mk + jand m=0, 1, ..., > = b©_ This matrix defines a bounded
linear operator on /2 by the usual operation of multiplication of a matrix
times a vector. We also denote this operator by G.
For each fixed m=0, 1, ..., consider the sequence {R(™}, n=0, 1, .., of
monic polynomials generated by the three term recurrence relation
R (z)=(z—=b"*™) RU(z) — [a"+*™]% R(™ (z2), (3)

n+1

with initial conditions
R™)(z)=0, R{(z)=1.
Set
Oc(z)=(a® - a™) " [ R(z) = [a]? R ,(2)]. (4)

Because of the banded structure of G, any linear combination of powers
of G (that is, a polynomial evaluation of G), also defines a bounded linear
operator on /2. We have

THEOREM 1. Let G be the matrix defined by (1)-(2) and let Q,. be the
polynomial given by (4). Then

Ak Ik Ok
1 [0 1
0(G)=| *F 7K K (5)

Ok Ik Ok R

where Ay, I, and O, denote matrices of order k, with I, the identity and O,
the null matrix.
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From Theorem 1, using standard results of operator theory, one can
easily characterize the spectrum of G and find its essential spectrum. In the
sequel, o(-), g,(-), and g/(-) denote respectively the spectrum, the essen-
tial spectrum, and the set of eigenvalues of finite type of the operator (-)
(for the definitions see, for example, [10]).

THEOREM 2. The spectrum of G satisfies
0:(3(G)) = 0(0x(G) =) 0x(G)) U [ -2, 2]. (6)

In particular, for the essential spectrum of G, we have

Uess(G):{Z: Qk(Z)E[—2,2]}, (7)
and a{( 0.(G)) consists of isolated points in C\[ -2, 2].

As stated above, Theorem 2 was proved in [6] following a different
approach. The structure of the paper is as follows. In Section 2, we
deduce Theorem 2 from Theorem 1. Section 3 is devoted to the proof of
Theorem 1. In the sequel, we preserve the notations introduced above.

2. THE SPECTRUM OF THE OPERATOR G

We start out pointing out some immediate consequences from known
results from operator theory. Let p be a non constant polynomial. From
the Spectral Mapping Theorem (see [ 12, p. 53; 7]) it follows that

p(a(G)) =0a(p(G)), (8)
P(0455(G)) = 0,5(P(G)). 9)

Moreover, Weyl’s Theorem (see [10]) states that
Oess(H + K) =0, (H), (10)

if H is normal and K is an arbitrary compact operator.

Proof of Theorem 2. Using (9) with p=0,, (5), and (10) it follows
that

Qk(aess(G))zaess(Qk(G)):o.ess(H)a (11)
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where
O I Oy
I (0] 1
H=| ‘¥ k k (12)
O I, O

Consider two column vectors v = (v, v,,..)" and w=(w,, w,, ..)" (not
necessarily in /2). In the sequel, (-)* denotes the transpose of the vector or
matrix (-). Suppose that formally, we have that

(H—Al)v=w.

This means that the coordinates of v and w are related through the
equations

) .
U gy — A+ Uy =Wy, j=12, ..,

where v_j, ;= --- =v,=0. From this it is easy to see that the spectrum
and the point spectrum of H and the Jacobi matrix 7 with constant coef-
ficients a? =1, b? =0, i=0, 1, ... coincide. It is well known that the spec-
trum of T'is [ —2, 2] and that it has no eigenvalues. Thus, due to (11),

Qk(aess(G)) :aess(Qk(G)) = [ 727 2]7

and (7) follows.

Relation (6) is a consequence of (8) and the fact that since C\o (0, (G))
is connected, the set g(Q0.(G))\o,.(0:(G)) consists of isolated points
in C\o,,(0,(G)) which are eigenvalues of finite type (see [10,
Corollary 8.5]). Thus (6) takes place with which we conclude the proof. ||

3. PROOF OF THEOREM 1

Notice that for each m =0, 1, ..., the m-th power G” of G is a symmetric
(in the sense that (G™)"=G™) 2m+ l1-diagonal matrix. Therefore, for
0<m<k, G may be written as a block tridiagonal matrix of the form

s(m (x(m))t Ok
x(m y(m) (x(m))t

G" =
0, xm  ym

; (13)
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where x™, 3™ and s are matrices of order k, ™ is symmetric and x™
is upper triangular. Moreover, the elements on the main diagonal of x™
are zero except possibly for m = k. In particular, for m =1, we have that

0 ... 0 a® p® 4
X(l)— 0 o 0 0 1) _ a(l) b(l) a(z) (14)
= oo YT 0 4@ pe
0 ... 0 0 S

Consider the matrix of order k
J=xW 4 0 4 (xO)r
Let us prove that for each 0 <m <k
J’"zx("’)+y(m)+(x(m))’. (15)
For m =1, this formula is true by the definition of J. Assume that the for-
mula holds for 0 <m <k — 1, let us prove that it is also satisfied for m + 1.
In fact, since G™*!=G™. G, direct calculations show that
X0+ D) = (1) 3, (1)
POHD ) (DY 4 3, 0m (1) g (e lm)ye (1)
(x(m+ 1))t :y(m)(x(l))t + (x(m))t y(l)'
Thus
x(m+l)+y(m+l)+(x(m+l))t
= x () (D) g Om) (D g, 0m)), (1)
+ (x(m))t x4 (y(m))t x4 (x(m))t y(l)_ (16)
On the other hand, using the induction assumption, we have
JrHL =g J= (x4 pm 4 (x0))(xD 4 pD 4 (xD)),
Carrying out the products indicated by the parenthesis one obtains the
same expression as on the right hand of (16) since xx® =

(x") (xM)! = O, because x™ is upper triangular with all the elements on
the main diagonal equal to zero.
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Let p be a polynomial of degree <k. From what has been proven above
it follows that

s x' O
x xt oo

pe)=| g , (17)
k x y oo

where x, y, and s are matrices of order k and

x+y+x=pJ). (18)

Let G' denote the infinite dimensional periodic tridiagonal matrix which
is obtained substituting a® by —a'® in G. It is easy to check that

s —=x' O
-x y =X’
G)=
p(G") Or —x y .

where x, y, and s denote the same matrices as in (17). Thus if
J = —xW M ()
then
—x+y—x'=plJ). (19)
The characteristic polynomials of J and J' are equal to
det(zl —J) =qi(z) —2a"V ... a®,  det(zl, —J') =qp(z) +2a"V - .a®,
where ¢,(z) = R®(z) — [a®]? R ,(z). This easily follows developing the
determinants by their last row. From the Hamilton—Cayley Theorem, we
obtain
qe(J)=2a"...a®r,, g(J)=—=2aV...a®I,.
Therefore, if we take p=g¢, in (18) and (19), we obtain the equations
x4+ y+x'=2aV...a®[, —x+y—x'==2aW...4®1_. (20)
Summing these two equations, it follows that

2y=0,. (21)
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On the other hand, since x is upper triangular, from (20) and (21), we also
conclude that

x=a¥...a®J,.
With this we conclude the proof of Theorem 1.

Remark 1. Due to the periodic structure of G (and ¢,(G)) it may be
shown that

71,1 71,2 0 VLk—1 0
4, = . .
* Yek—1,1 0 0 0/
0 0 0 0

where 7, ; denote some complex numbers.
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